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ON THE CONFIGURATION OF SHOCK WAVES ENCLOSING A LOCAL SUPERSONIC ZONE* 

A.N. KRAIKO 

The problem of shock waves enclosing a local supersonic zone (LSZ) is 
considered. The possibility of obtaining the "inverse X-like" configura- 
tion is pointed out. The first shock in such a configuration appears 
inside the LSZ. An infinite discontinuity of the second derivatives 
propagates from the point of its origin along the c+ characteristic and 
arrives at the sonic line (Sl). This in turn may lead to the appearance 
of a second shock forming, together with the first shock, the configuration 

in question. 

1. Consider a flow in a LSZ (Fig.1) which appears in the case of transonic flows Of a 
perfect (inviscid and non-heat conducting) gas past a profile or a solid of revolution (Fig. 

11, and in the corresponding modes near the smallest cross-section of the Lava1 nOZZle. In 
Fig.1 the gas moves from left and right, and the dashed, thick and thin curves depict, re- 

spectively, the sonic line, the shock wave and the characteristic. 
We know /l-7/that in spite of the fact that, basically, a 

shock-free flow may emerge from a LSZ, continuous solutions are 
an exception and the LSZ is generally closed by one or more shock 
waves. Considerable effort was made in investigating the nature 
of such shocks to explain the possibility of so-called natural 
solutions in which no discontinuities of any derivatives whatsoever 
of the flow parameters arrive at the SL along the characteristics. 
An analysis carried out by Landau and Lifshitz /8/ and by Ludwig 
/9/ has shown the impossibility of the existence of a natural sol- 
ution which would have a self-similar structure near the point at 
which the shock wave appears on the SL. Irrespective of this fact 

Fig.1 and by virtue of other factors (in particular, due to the insuf- 
ficient incisivenessofthemethodof visualizing the weak shocks 
and the erroneousness of Theorem 8 of /li which states that the 

appearance of a shock within the LSZ is not possible!, numerous attempts have been made /4, 
lo-18jto construct natural solutions with a shock originating on the SL. All such attempts 
have failed. 

On the other hand, using the assumption mentioned above concerning the self-similar 
character in the investigaticn of reflection of the singulari+ _ies from the SL, brought in from 
the direction of the body along the c characteristic, it was found /8,19-26/,that the closing 
shock can originate on SL only in the case when a sufficiently strong singularity arrives at 
it, such as a finite discontinuity of the first-order derivatives or an infinite discontinuity 
of the second-order derivatives of the flow parameters. As a resi;lt, the point of view of 
/9,' prevailed, according to which the shock closing the LSZ originates, provided that the body 
is sufficiently smooth, within it and is caused by the intersection of the characteristics 
(the second family in Fig.1) of the compression waves propagating from SL. This point of 
view is corroborated by numerical computations /27-30/, Itistruethat the authors of these 
papers occasionally state that the meshes used by them do not allow the fine flow structure 
to be resolved near the point ("tip") at which the shock originates (point o in Fig.1). The 
solutions of /31-331 offer further evidence thatashockmay originate within LSZ. Thesolutions 
constructed in hodograph variables show, on passing to the physical plane, a "fold" near the 
right-hand boundary of LSZ whose removal requires the introdnction of a shock originating 
within the LSZ. 

In the papers cited the singularities brought to SL invariably connected with the analogous 
singularities of the streamlined contour. It is for this reason that the only search which 
seemed to be justified, was that for the "natural" solution, in the case of the bodies which 
had no points, within the LSZ, 
of its first derivative. 

of finite curvature discontinuity or of infinite discontinuity 
The fact that the "discontinuous" characteristic may originate 

within the flow was however disregarded. In Fig.1 the 
point o will represent such a characteristic. 

P-characteristic passing through the 
If the discontinuity, which appears, is found 

to be of the required magnitude and sign, then another shock may "reflect" from the point of 
its intersection with the SL. Both shocks form an "overturned" or "inverse %-like" con- 
figuration closing the LSZ. 

l Prikl.Matem.Ifekhan.,49,2,236-243,196s 
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On the weak shocks the discontinuity of the Riemann invariant corresponding to the 
characteristics of the "opposite" family (the first family in the case of Fig.l), as well as 
the discontinuity of the entropy s, are both proportional to the cube of the pressure increment 
[pf (here and henceforth [$I =+,,-$_ is the difference in * to the right and left of the 
discontinuity). This at first glance implies (see e.g. /34/) that on the c'-characteristic 
emerging from the point o the first and second derivatives of the parameters are continuous 
and no second shock can appear according to what was said above. This argument, however, 
would be valid if the point o were to lie on the discontinuous c- characteristic carrying 
the jump in the curvature of the stream lines. Here Ipl is a linear function of the distance 
T measured along the shock from its origin, with an accuracy up to higher-order infinitesimals. 
If on the other hand, as in the general case of a flow in LSZ, the shock is caused by the 
intersection of the (( continuous" (along the curvature of the stream lines) 
then/35, 36/:Ipl N Z'~Y 

c--characteristics, 
and the conclusion arrived at in /34/ concerning the continuity of the 

second derivatives is found to be false. Moreover, in this situation an infinite discontinuity 
of the Riemann invariant I' corresponding to the c+-characteristics , propagates from 0 along 
the c'-characteristics. 

2. When the characteristic carrying the infinite discontinuity in the second derivative 
of I'is reflected from SL where p = const, a shock wave will appear at the point of reflection 
provided that the sign of the discontinuity in question corresponds to the rarefaction wave. 
In this connection we must explain what type of discontinuity appears on the c+-characteristic 
passing through the point o representing the tip of the inner shock. In explaining this we 
shall limit ourselves to plane, isoenergetic and isentropic (up to the shock) flows, although 
it can be shown that the basic result remains valid also in the general case of non-isoenergetic 
non-isentropic and axisyrmnetric flow. We place the origin of Cartesian zy coordinates at 
the tip of the inner shock, and direct the 5 axis along the velocity vector q. Let 6 be 
the angle formed by q with the z axis, a the speed of sound, M =q,'a the Mach number, 

(P = 19 I)? CL = arcsin (l/ 31) the Mach angle and p the density. We shall, as a rule, denote 
the parameters at the point o by the subscript "of'. The invariants I' and I- which are 
preserved in the subregions of the continuity and isentropicity of the flow on the c+ and c- 
characteristics respectively, are given by the formulas 

P 

Z*=I*(B,p)=it_c Tdp s ctg ? 
P0 

(2 II 

with the natural correspondence of the indices and signs. The integral in (2.1) is computed 
for s =sO and is therefore a function of p only when p0 is fixed. It can be shown that, 
irrespective of the presence of a curved shock, the invariants I* are also preserved in a 
small zone of weak non-isentropicity of the flow adjacent to the tip of the shock, with the 
accuracy required in f-turf discussions. At the same time, the increments in I* and s must 
be taken into account during the passage tkroligh the shock. 

Fig.2 shows the mesh of the characteristics of both families 
and the shock near the origin of coordinates. As we know, one 
of the properties of weak shocks is the fact that they follow 
the path along the bisector of the angle between the character- 
istics of the same family arriving at it from the different 

sides. Thereforethetipoftheshockdivides thebase ah of the 
characteristiccurvilineartriangleinhalf (abisasegmentofthe 
c+ characteristic, ac and bc are the segments of the C-- 

characterlstlcs). We introduce the characteristicvariables El1 
where j =const alongthe c+-characteristics. We choosethemin 
such amanner that E0 =nO = 0. Wetaketheinvariant I- as 11, with 
theinvariantsatisfyingthe conditions given anddecreasingmono- 
tonicallyduringthepassage froma to b. ThedecreaseiSgenerallY 
caused by the factthatthe c--characteristicsgenerate a campres- 
sionwavenear 0. In the caseof a flow in LSS,themonotonic decrease 
in I- duringthemotiontowardsSL takesplaceonall cs character- 
istics /l, 2/. Since 11~ = I,- = 0, itnowfollowsthat no> 0. and 

Fig.2 tlb<O, 

If we regard .T and 51 as functions of 5 and n* then the 
following relations must hold at the tip of the shock arising within the perturbed flow /34,': 

(2.2) 

Therefore we have, on the characteristic E=ll near the point o, 

7 = till? - 0 (11s). y :- ..l 1; ao'l" - 0 (1;s). .4 < (J (2 . 3) 



where the constant A determines the compression of the flow leading to the appearance of the 
shock. Relation (2.3) and equality of the segments (lo and ob imply that 'la = -nb. Recall- 

ing that at the point c [I+] Y [p13, we find [pl -11-l = lql = 2~. For the same reason the angle 
at the vertex c of the triangle abc is also of the order of qb. Since we have, by virtue 
of (2.3)1 -qbs for the length 1 of the segment ab, this yields 7s~~~ wqt,* = [n1*/4. This 
together with the formula for [pl given above, implies that [pl -t'h. S+nce the triangle abc 
is "normal" and its base is ?jb-times SmallSr thSII its height (I qb 19 I): the basic result 
of the paper remains valid in the general case of non-isentropic , non-isoenergetic and axisym- 
metric flow. We note by the way that in case of the shocks generated on the discontinuous 
(with respect to the stream line curvature) c--characteristics, only the first equalities 
in (2.2) hold. Therefore we have 1 y [7$*, T w Iv1 and unlike the situation under considera- 
tion, ipI -T and [I+] WT'. 

The sign of the singularity propagating along the characteristic E = 0 from the point 
o towards the SL, is governed by the sign of the coefficient G in the formula [PI ? Gfl* 
and G = B3C3D provided that we write the relations obtained above in the form 

Ipl = B Iql +- 0 ([ql), lql = CT”’ + 0 (f”). [I+1 = D IpI + o ([PI’) . (2.4) 

We will find the coefficients of (2.3)) but we will first show that the singularity on 
the line f = 0 is characterized when n = constC 0 by zero discontinuity in the first and 
the second derivatives of I+. To do this we shall take as E, T of the point of intersection 
of the c+-characteristics with the shock or with the c- characteristic arriving at o. We 
shall take into account the fact that the variation in I'on the segment of the cl-character- 
istic is of the order of 0 (r"l) in the region of non-isentropicity of the flow behind the 
shock. Then, by virtue of the fact that 1' is conserved on the c+ characteristics we have, 
for small 5 > 0, 

Here (6'1'; a:)_ and (ii*/+, c?i?)_ are regular functions of 5 which, as g- - 0. are 
identical with the corresponding partial derivatives (n) is fixed1 to the left of the character- 
istic E = 0. 

Now to prove the assertion made above, we must find EZ (8~1 ai), as a function of n 
with 5 = 0 and n (0. i.e. above the point o. Here T denotes, for any c--characteristic, 
the distance measured along it (also down +he shock) from the characteristic E = 0. Taking 
into account the definition of E and the fact that the shock touches the c--characteristic 
at the point o, we find that rf" = 1. 

To find T; (0. 71. we shall write the equations of the characteristics in the fornl 

=li = yV ctgce - 0). SE = YE ctg (6 - ai. 

We differentiate the first equation with respect to 5 and the second with respect to 
'1' we subtract one from the other, and use the equation yi = rEsin(O -a) and the results of 
its differentiation with respect to 7 tc eiiminate Y: and Y:,,. Let us find the derivatives 
of 6 and c1 with respect tc q and E. taking intc account the fact that q= I-. the formulas 
(2.1) and the expression 

(2.6) 

which follows from the definition cf the Mach angle, total enthalpy H and speed of sound, and 
the known thermodynamic relationships. In (2.6, w = 1 p is the specific volume and wpp = (0% 
@2),. For a real gas we have q=z--1 where y. is the adiabatic index. Finally we find 
that the variation of T-_ on the characteristic E- 0 is described by the equation 

Till - * Tk = Y,Q! Q= 
-QI:’ 

~~W~CISU.I 2asin (6 -a) 
(2.7) 

where the coefficients of I and r,,Q 'I: are computed at E= (1 and are therefore known func- 
tions of 11. According to (2.5), IL+ is defined when E= 0, by the first term. In the case in 
question the term is negative since the C-characteristics form a rarefaction wave /l, 21. 
Integrating (2.7) and taking the initial condition rE= 'iO= 1 into account we obtain, for 
8, = 0, 
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In the case of a real gas for which, as has already been shown, V= xi- 1, 

Since I:+<0 when E= 0, rp is positive for the I'usualM gases and the quantity sin(e+cr) 
on the characteristic ;=0 above the point 0 is also positive, it follows that Q>O ad 
according to (2.8), T remains positive when 
Therefore the derivitives of IT+ 

a,ia<a/2 during the motion towards the SL. 
and ITT+ behave in the same manner as I~+ and 1tt+ for 

which the estimates (2.5) hold. 
From amongst the coefficients (2.4). B is determined in the simplest manner. Namely, 

remembering that according to the last equation of (2.4), II+1 _ [pl3 we obtain from (2.1), by 
virtue of the definition q = I‘. we have at once B = -(pq'"tga), /2. To find the coefficient 
C we integrate the equation of the c--characteristic as ldy = ctg (6 - a) respectively from 
a and from b, to c. We take into account the "narrowness" of the triangle abc , the small 
variation in I' on the segments cc and bc where n = no. and q = ?lb r -Q and the fact 
that the coordinates of the points a and b are found from (2.3) with i)b = -_ri,,. Equating the 
values of yc found in this manner for both characteristics, we obtain an expression for yc 
which yields, apart from higher-order infinitesimals, yc as a linear function of nag = [1]]* / 4. 
Next we use y, to find, with the same accuracy, from any equation for r,, the magnitude of 
the latter (and -[n]?). Having found rC = $'rr,?l and neglecting the index c, we arrive 
at the second formula of (2.4) with the coefficient c = - {--m/(4 sin zacosa))t/‘. 

Here cp is the same as in (2.6). In the cases of an "ordinary" gas, which concerns us 
here, T>@ and when A (0. which occurs as we already noted in the present situation, the 
expression within the braces is positive. The minus sign preceding it is taken because in 
(2.4) ITI < 0 and TI.2 a5 well as T are positive. 

To find the third coefficient of (2.4) we use (2.6) and its corollary 

in which F~= (6q!dp),. Fcr a real gas we have FI; =o. 
Taking into account (2.61 and (2.9) and the fact that (p+ - pO) =i ilr,l 2, a ]s] = C (IpP), 

we obtain from the expression for I' (the integral is taken for s = SJ 

Further, froE the relations or. the shock we obtain, one after the other, is] and ctg (B_ - 

c) where c is its angle cf inclination to the .r axis, and then we find WI as a func- 

tion of Ipl. using the fsllowing relations: 

Ph 
Qz=P, 

1 - p:. 
, 

in which h = h(p. p) is the specific enthalpy, w, = (80 il as&. T is the absolute temperature, 
h* = (ah 'BP), and h, = (irig sip),. The relations in question are 

and for a real gas we have p = y. + 1. The first of the above relations is well-known. The 
second and third relations lead, in particular, to a result which is also known and has already 

been mentioned, here, namely the inclination of a weak shock wave. finally, substituting the 
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expression for 161 into (2.10) we obtain the formula for the coefficient D from (2.4) 

D={T-_:+A($+&+&- an'2a 

g 1 $:;:" )I,,($$$),,, p=+' + 

According to the expressions for B and C obtained earlier, the product BC is positive 
in the case discussed here. Therefore, the sign of the coefficient G in (2.5) is the same as 
the sign of D. Computations carried out for a real gas when p =X +l, 9 = 0 and F = x 
withi -<x g5',have shown that (0.<a, <n/2)D over the whole possible range of Mach angles 
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Fig.3 

and hence G is less than zero. Therefore, when & > 0, the last terms on 
the right-hand sides of (2.5) are also negative and tend in the second equa- 
tion to --oc as E-L $0. This corresponds to an additional rarefaction wave 
propagating from the point o towards the sonic line. This makes possible the 
reflection of the second "foot" of the shock closing the LSZ from the SL. 
The resulting flow pattern is shown in Fig.3. The figure depicts, apart from 
the c'-characteristic passing through the point o, the shocks and the "basic" 
sonic line, with an "additional" supersonic zone containing a bundle of c+- 
characteristics. Such a zone appears to the right of the point of interaction 
between both feet of the shock, since the shock polars do not intersect on the 
transonic line /9/. 

Thus we see that irrespective of the smoothness of the streamlined body, 
a configuration of shocks is possible fn which the "right foot" of the closing 
shock originates at the sonic line although it is caused by the intersection 
of the C- characteristics and an appearance of the "left foot" of the shock 
within the supersonic zone. We shall call a shock of this type the "inverse" 

A-type shock. The configuration discussed above, on one hand, makes it 
necessary to bring in the results concerning the reflection of the singular- 
ities from the sonic line, which seemed to be relevant only to the non-smooth 
contours, and, on the other hand, it provides a fresh insight into the efforts 
of Frank1 and his followers who sought a natural solution with a shock orginat- 
ing at the sonic line for smooth bodies. 

The author thanks G.G. Chernyi, OS. Ryzhov, V.N. Diesperov, Yu.B Lifshitz and I.A. Chemov 
for valuable comments, and V.L. Grigorenko for computing the coefficient D numerically. 
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